当前位置:首页 > 小熊资讯 > 正文

千层云(www.187iot.cn):


多领域涉及到人工智能,你知道的有几个?(人工智能最广泛的两个领域)


01 语音识别(Speech Recognition)

Siri就是一个典型的例子。

目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。

02 虚拟助理(Virtual Agents)

虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。


03 人工智能硬件优化(AI-optimized Hardware)

用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。


04 生物信息(Biometrics)

这项技术能够识别、测量、分析人类行为以及身体的物理结构和形态。它能赋予人类和机器之间更多的自然交互能力,包括但不仅限于图像、触控识别和身体语言识别,目前被广泛用于市场研究领域。


05 文本分析和自然语言处理

文本分析和自然语言处理利用统计和机器学习方法理解句子的结构、含义、情绪和意图,广泛应用于欺诈探测和信息安全等领域,同时还可用于非结构化数据的挖掘。


06 数字孪生/AI建模(Digital Twin/AI Modeling)

数字孪生是一种软件架构,搭建起物理系统和数字世界的桥梁。

通用电气公司(General Electric,GE)宣布将成立一家人工智能公司,用于对飞机引擎、机车、燃气轮机的监控、以及故障预测。该公司的数字孪生仅几行代码,即便是最复杂的版本看上去也就像三维计算机辅助设计图纸,充满了交互式图表和数据点。


07 网络防御(Cyber Defense)

网络防御是一种计算机网络防御机制,专注于预防、检测以及在基础设施和信息在受到攻击和威胁时进行及时响应。

人工智能和机器学习将网络防御带入了新的发展阶段:在2017年,共检测出20亿次的入侵记录,其中76%的入侵是意外发生的,69%是身份丢失造成的。

递归神经网络(Recurrent neural networks,RNN)能够处理输入序列,与机器学习技术相结合创建出监督学习技术,能够发现可疑目标,并检测出高达85%的网络攻击。



08 图像识别( Image Recognition)

图像识别是指在数字图像或者视频中识别和检测出物体或特征的过程,人工智能技术在该领域具有独特的优势。

人工智能可以在社交媒体平台上搜索照片,并将其与大量数据集进行比较,从而找出与之最为相关的内容。图像识别技术能用于车牌识别、疾病检测、客户意见分析以及身份验证等。


09 智能营销(Marketing Automation)

到目前为止,市场部门已经从人工智能中获益良多,业界对人工智能的信任是有充分理由的。55%的营销人员确信人工智能在他们的领域会比社交媒体有更大的影响力。

智能营销能够提升公司的参与度和效率,对客户进行细分、集成客户数据和管理活动,并简化重复任务,让决策者们有更多的时间专注战略制定。


10 知识工作辅助(Knowledge Worker Aid)

虽然许多人都很担心AI是否会完全取代人类工作,但别忘了,AI科技能够在很大程度上帮助人们出色的完成自己的工作,特别是在知识工作领域。

知识工作的自动化已被列为第二大最具破坏性的新兴技术。在大量依靠知识工作者的医疗和法律领域,从业者们将逐渐使用AI技术作为诊断工具。


11 情绪识别(Emotion Recognition)

情绪识别可以通过高级图像处理或音频数据处理来“读取”人类脸上的表情。目前,我们已经能够捕捉“微表情”,识别肢体语言暗示,以及分析含有情绪的语音语调。

执法人员在审讯过程中使用这项技术能够获取更多的信息,这项技术也被广泛运用于市场营销。


12 机器学习平台(Machine Learning Platforms)

机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。

通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务。

Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。


以上这些大家能知道几呢?

如果您对该产品感兴趣,请填写办理(客服微信:xiaoxiongyidong)

为您推荐:

发表评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。